Random lasing in a colloidal quantum dot-doped disordered polymer
نویسندگان
چکیده
منابع مشابه
Microsecond-sustained lasing from colloidal quantum dot solids
Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we fi...
متن کاملLasing from colloidal InP/ZnS quantum dots.
High-quality InP/ZnS core-shell nanocrystal quantum dots (NQDs) were synthesized as a heavy-metal-free alternative to the gain media of cadmium-based colloidal nanoparticles. Upon UV excitation, amplified spontaneous emission (ASE) and optical gain were observed, for the first time, in close-packed InP/ZnS core-shell NQDs. The ASE wavelength can be selected by tailoring the nanocrystal size ove...
متن کاملNarrowband random lasing in a Bismuth-doped active fiber
Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser med...
متن کاملColloidal quantum dot photovoltaics: a path forward.
Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun's broad spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal qu...
متن کاملLasing in one dimensional dye-doped random multilayer.
Lasing action in a fully organic dye doped flexible 1D random multilayer photonic crystal is reported. The emission energy can be modulated by varying layers thicknesses to fit the dye characteristics, thus showing the potential interest of such cheap materials in active devices for optoelectronic applications.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2016
ISSN: 1094-4087
DOI: 10.1364/oe.24.009325